Ikke lett å være kresen bille i skogen

Tone Birkemoe, Inger Skrede og Ine-Susanne Methlie Hopland, Norges miljø- og biovitenskapelige fakultet og Universitetet i Oslo

En ved-levende praktbille (Sternocera ruficornis) i flukt. Foto: Shutterstock

Selv bittesmå dyr kan reise ganske så langt – lenger enn du tror. Om en bille flyr opp over trekronene kan den seile av gårde med vinden. På kort tid kan den tilbakelegge lange distanser før den stuper ned mellom trekronene på et nytt sted. Dersom den får seg kjæreste og barn i den nye skogen, vil barna være litt ulike billebarn med to foreldre fra den samme skogen.

Veltilpassede småkryp

Biller som bor langt mot nord må fikse kalde vintre og korte somre. Og uansett hvor de bor må de få tak i mat, takle sykdommer og unngå å bli spist av andre dyr.

Over tid har derfor billene fått litt ulike egenskaper som gjør at de overlever best akkurat der de har bodd i mange generasjoner. Og det er i grunnen alt de trenger. Men hva om klima og miljøet endres?

Trøblete tider

Tenk deg at billen vår, som lever av godt nedbrutte trestokker mesteparten av livet, bor i en skog langt mot nord. Skogen er omgitt av veier, fjell, byer – og er preget av skogbruk. Skogbruket tar ut tømmer, så maten til billen – store, stokker som har ligget lenge- er det lite av. For en bille som kommer susende over trekronene er det derfor vanskelig å finne de få egnete stokkene.

Så blir det, over noen tiår, varmere og tørrere. Hvordan går det da med billene i nord? Om det fortsatt er mange billeindivider i skogen kan noen ha egenskaper som fikser nettopp varme og tørke i arvestoffet sitt – egenskaper som vitner om tidligere kontakt med biller fra sør. Men dersom det er få individer er slike egenskaper sannsynligvis forsvunnet. Det kan bety at billen er i trøbbel.

Naturens forsikringspolise

Billenes egenskaper styres i stor grad av genene og variasjon i arvestoffet mellom ulike billeindivider i en populasjon er som en rikholdig «verktøykasse», eller forsikring, mot endringer.

Og evnen til å overleve tørke og varme, slik eksempelbillen vår kan måtte takle i framtiden, er et eksempel på en slik forsikring.

Skogbrukets rolle

Skogbruket påvirker billene i skogen, og særlig de som er avhengige av død ved. I Ecoforest– prosjektet skal vi blant annet undersøke hvorvidt utvalg av arvestoffet til en billeart varierer mellom ulike skoger.

Vi har valgt oss «rødrandkjukebilla» Gyrophena boleti som er relativt vanlig på Østlandet og som vi derfor kan samle og gjøre genetiske undersøkelser av fra mange steder.

Rødrandkjukebilla lever på granskogens vanligste kjuke, nemlig rødrandkjuka. De svarte prikkene er alle rødrandkjukebiller. Bilde: Ine-Susanne Hopland Methlie

Hva vi venter å finne? At skogbruket ikke har påvirket arvestoffet til «rødrandkjukebilla» nevneverdig. Rødrandkjukebilla er tross alt en relativt vanlig art som lever på en av granskogens vanligste kjuker – rødrandkjuka. Og vi har samlet billene i et område med mye gran, ikke i små isolerte grupper av grantrær.

Men selv om rødrandkjuka er vanlig vet vi også at den er mer tallrik der det er mange døde graner, det vil si der skogsdriften har vært minst intensiv. Og der det er mye rødrandkjuke er det sannsynligvis mange rødrandkjukebiller. Når vi også vet at den genetiske «verktøykassa» gjerne er mer rikholdig der det er mange individer er det derfor ikke umulig at vi faktisk finner forskjeller.

De særeste har det verst

Mange av de billene vi studerer har derimot en mye særere livsførsel enn rødrandkjukebilla: som eksempel-billa vår i skogen mot nord. Den vil kun leve sitt liv i døde, store trær som har ligget lenge.

Dette trestokklivet var en lur strategi den gang skogene var proppfulle av trestokker. Men sære matvaner er ikke et triks når stokkene blir til plank, flis og møbler. Og, i en verden der vi mennesker endrer både billemat og klima, trenger vi at billene er så fleksible som mulig – og nettopp derfor trenger de godt med genetisk variasjon.

Hvor stort problem tap av genetisk variasjon i våre biller er, vet vi lite om. Håpet er at problemet er lite, men det er også grunn til å tro at for noen biller er det stort. Det er tross alt mange hundre arter som lever i skogens døde trær. Og de særeste vil slite mest.

Dette innlegget har tidligere vært publisert på forskning.no

Gammelskogsbukken er en av mange veldig kresne biller. Den lever bare i store, soleksponerte furustokker som har ligget lenge.

Det usynlige livet i død ved

Det er mye som lever inne i død ved! I EcoForest skal vi prøve å finne ut mer om hva slags arter og artsgrupper som er tilstede i de døde trærne, der de ligger og langsomt brytes ned til jord i skogen. Vi vet allerede at det, i tillegg til sopp, er et mangfold av bakterier, insekter, rundormer og små encellede organismer som kalles protister inne i og utenpå veden.

Det foregår også en gradvis utskifting av organismene i døde trær – fordi noen liker seg best i ferske døde stokker, mens andre liker seg bedre i stokkene etter at de har ligget og råtnet en stund. I en naturlig skog vil det være massevis av død ved til alle, både av den ferske og den gamle typen.

For å undersøke hvilke arter som befinner seg i disse stokkene har vi tatt prøver av fire hundre stokker, jevnt fordelt i de tjue feltene våre. Vi har tatt ut en liten mengde sagflis fra hver stokk, og fra dette skal vi isolere DNA for å gjøre såkalt meta-strekkoding.

Innsamling av sagspon

Denne metoden lar oss virkelig danne et bilde av hvilke organismer som er tilstede og hvordan de forholder seg til hverandre.

I tillegg til artene vi kan se deler av eller spor etter fra utsiden, som sopp og insekter, så kan vi med meta-strekkoding også fange opp DNAet til alle de mikroskopiske organismene.

Vi skal isolere en spesifikk bit av DNAet vi isolerer, en såkalt «strekkode», og sammenligne dette med databaser hvor disse strekkodene er knyttet til organismene de er hentet fra.

På denne måten kan vi fange opp et mangfold som aldri ville vært mulig ved å bare se på stokkene ute i skogen.

Flere bakterier (mye av de små svarte prikkene) og en ukjent protist som slår med en flagell, i tillegg til et tøffeldyr som kommer svømmende forbi. Tar gjerne i mot forslag på hva det kan være!
Sannsynligvis et tøffeldyr, en encellet organisme som potensielt spiser bakterier

Her ser vi noen av disse protistene, forstørret 400 ganger. Dette er bare en liten mengde spon fra en av stokkene våre, lagt under et mikroskop.

Det er sannsynligvis også et samspill mellom de synlige nedbryterne (soppen) og flere av disse andre mikroorganismene (bakterier og protister), og ved å samle inn data på så mange stokker som vi gjør her, vil det være mulig å identifisere potensielle nettverk av samarbeidende organismer.

I de fire hundre stokkene våre har vi dekket alle stadier av nedbryting, så vi vil også kunne se hvordan samfunnet av mikroorganismer endrer seg mens stokken blir mer og mer brutt ned.

Det tar litt tid å få gjort alt dette med så mange prøver, men arbeidet er godt i gang. Nå blir det utrolig spennende å se hva vi finner fremover!

Soppene kontrollerer karbonets kretsløp i skogen

Håvard Kauserud, Universitetet i Oslo

Skog utgjør et stort karbonlager og spiller en viktig rolle for jordas fremtidige klima. Spesielt er de nordlige barskogene viktige. Her lagres enorme mengder karbon, ikke bare i selve trærne, men også under bakken, i skogsjorda. Dette skjer gjennom et finurlig samspill mellom trær og sopp, som forskyves når vi driver skogbruk.

Nedbrytersopp – skogens gjenbruksarbeidere

Skogstrærne binder enorme mengder karbon fra lufta gjennom fotosyntesen, kanskje den viktigste biokjemiske reaksjonen på jorda. En stor del av karbonet ender opp i plantenes cellevegg, bygget inn i cellulose og lignin, som er to av de vanligste organiske stoffene på jorda. Cellulose og lignin er solide saker og brytes ikke ned så lett. Her kommer nedbrytersoppene inn. Disse soppene kan produsere spesielle enzymer, skreddersydd for å fordøye dødt organisk materiale. Få andre organismer klarer å bryte ned alle stoffene i plantenes cellevegg.

Når planter dør, det være seg store trær eller mindre urter og moser, kappes nedbrytersoppene om matfatet de døde plantene representerer. Gjennom nedbrytningen slippes karbonet tilbake i atmosfæren som CO2. Samtidig frigjøres næringsstoffer som levende planter trenger for fornyet vekst, som nitrogen og fosfor. Uten nedbrytersoppene ville plantenes vekst stoppet opp, det finnes nemlig begrenset med næringsstoffer i naturen. Dette er den første viktige rollen soppene spiller i karbonets syklus – som gjenbruksarbeidere. Samtidig som nedbrytersoppene frigjør drivhusgassen CO2, frigjør de også næring som muliggjør fornyet plantevekst.

Mykorrhizasopp – trærnes underjordiske hjelpere

Når trær fanger og binder karbon i fotosyntesen, sendes en del av karbonet ned i røttene og videre til en annen gruppe sopp, mykorrhiza-soppene. Mykorrhiza-soppene lever dels inne i treets røtter og dels i skogsjorda. Her hjelper de trærne med å ta opp næringsstoffer fra jorda, og i retur får mykorrhiza-soppene mat i form av karbohydrater fra treet. Mykorrhiza-soppene utviklet seg sammen med de første landplantene, for omtrent 460 millioner år siden, og gjorde det mulig for plantene å etablere seg på landjorda.

I skogsjord finnes enorme mengder mykorrhiza-sopp. De fleste matsoppene vi finner i skogen om høsten, som kantarell, piggsopp, steinsopp og kremler, er mykorrhiza-sopper. Fruktlegemet vi plukker er bare en liten del av soppen, størstedelen utgjøres av lange trådformede nettverk, mycel, under bakken.

Ved å hjelpe trærne med å skaffe nødvendige næringsstoffer, gjør mykorrhiza-soppene det mulig for trærne å binde karbon fra lufta i fotosyntesen. Dette er den andre viktige rollen soppene spiller i karbonets kretsløp i skogen, som trærnes underjordiske hjelpere.

Tidligere trodde man at skogsjord ble dannet ovenfra, ved at dødt plantemateriale, det være seg barnåler, kvister eller døde trær, falt ned og ble liggende på bakken og gradvis omdannet til jord. Nyere forskning, hvor man har datert alderen på karbonet i ulike jordsjikt, har derimot vist at skogsjord også bygges opp nedenfra, gjennom døde planterøtter og mykorrhiza-soppenes hyfer. Hvis man ser det hele fra mykorrhiza-soppenes perspektiv, kan trærne i skogen sees på som enorme karbon-pumper, som kanaliserer karbon ned i bakken til mykorrhiza-soppene, som så bidrar til å bygge opp jordlagene fra nedsiden.

Noen mykorrhiza-sopper er også nedbrytere

Mykorrhiza-soppene klarer ikke bare å ta opp lett tilgjengelig næring i jorda og gi det til sine vertsplanter – de kan også få tak i næring som er bundet fast i dødt plantemateriale. I fattige skogtyper, som lyngfuruskog, er mesteparten av næringen i jorda bundet i døde planterester. Da er det svært viktig for de levende trærne å få tak i disse næringsstoffene.

Her kommer mykorrhiza-soppene til unnsetning. Enkelte mykorrhiza-sopper kan lage og bruke de samme enzymene som nedbrytersoppene for å bryte ned dødt plantemateriale og få tak i næringen, som de gir videre til vertsplanten sin. Noen mykorrhiza-sopper er altså halvveis nedbrytersopp, dog ikke like effektive som de rene nedbrytersoppene.

Det gjelder blant annet slørsoppene, en artrik gruppe hattsopper man ofte ser i skogen om høsten. Av den grunn er de svært viktige partnere for trærne de vokser sammen med – uten samarbeidet med slørsoppene ville mange trær ikke fått tak i denne vanskelig tilgjengelige næringen i jorda. Samarbeidet lønner seg også for slørsoppen: Den får mat fra vertstreet og har dermed et konkurransefortrinn sammenlignet med de rene nedbrytersoppene.

Slørsoppene (Cortinarius) er viktige mykorrhiza-sopper i boreal skog og hjelper trærne å få tak i næringsstoffer bundet fast i dødt organisk materiale. Foto: Klaus Høiland

En skjult dragkamp i skogsjorda

Mykorrhiza-sopp og nedbrytersopp lever altså side om side i jorda, og de konkurrerer om å få tak i de samme næringsstoffene. Konkurranseforholdet mellom disse to sopp-typene tror man har en betydning for hvor mye karbon som tilslutt lagres i skogsjord. Dersom mykorrhiza-soppene klarer seg bra, gjerne med bistand fra vertsplantene sine, kan det føre til at nedbrytersoppenes vekst undertrykkes og de blir mindre tallrike. Konkurranseforholdet kan igjen føre til at mindre av det døde plantematerialet brytes ned og at det dermed lagres mer karbon i jorda.

I skogsjord utspiller det seg altså komplekse samspill mellom ulike typer sopp, samspill som er av stor betydning for karbonlagring og karbonutslipp. Det er vist i en rekke eksperimenter at dersom man stenger mykorrhiza-soppene ute fra jorda og gir nedbrytersoppene fritt spillerom, vil mer av plantematerialet brytes ned og mer CO2 slippes ut i atmosfæren.

Flatehogst endrer spillereglene

Når vi høster tømmer ved å hogge et helt skogbestand, forskyves konkurranseforholdet mellom mykorrhiza-soppene og nedbrytersoppene, og utslippet av CO2 fra skogsjorda øker. Etter en slik flatehogst dør alle mykorrhiza-soppene som levde sammen med trærne. De er ikke i stand til å klare seg uten vertstrærne sine. Forsøk har vist at man må sette igjen en høy andel trær for at mykorrhiza-soppene skal klare seg gjennom en hogst.

Når mykorrhiza-soppene forsvinner, får nedbrytersoppene fritt spillerom. En rask nedbrytning av dødt plantemateriale finner sted, og en tilsvarende stor mengde CO2 slippes raskt ut fra jorda. Mycelet til de døde mykorrhiza-soppene i jorda brytes også ned.

Etter hvert som nye trær plantes og vokser til, etablerer mykorrhiza-soppene seg på nytt. Ny forskning har vist at det gjerne er hurtigvoksende mykorrhiza-sopper, slike som kun benytter lett tilgjengelig næring i jorda, som trives i de unge skogene. I eldre skoger forekommer andre mykorrhiza-sopper som er i stand til å benytte vanskelig tilgjengelig næring, slik slørsoppene kan.

Dette forholdet, at det er mere av de «late» og hurtigvoksende mykorrhiza-soppene i ungskog, kan føre til at trærne vokser dårligere når den lett tilgjengelige næringen etter en stund er brukt opp. Det er påvist at gamle trær over hogstmoden alder fortsatt kan vokse bra, noe som kan skyldes at de har andre mykorrhiza-sopper. Men dette er foreløpig bare en teori; mer forskning er nødvendig for å undersøke sammenhengen mellom trærnes tilvekst og hvilke mykorrhiza-sopper de vokser sammen med.

Soppene spiller ulike roller i karbonets kretsløp i skog. Noen bidrar til nedbrytning og utslipp av CO2, andre til at mer karbon bindes av trærne og lagres i jorda. Effekten de ulike soppene har er også avhengig av naturmiljøet; hvor næringsrik jorda er og hvilken klimasone vi befinner oss i. Det underjordiske samspillet mellom sopp og planter er svært komplekst – vi forstår kun en brøkdel av det foreløpig. I forskningsprosjektet EcoForest jobber vi med å bedre forstå disse sammenhengene og hvilke effekter skogbruk har på karbonlagring og biodiversitet.

Takk til Anne Sverdrup-Thygeson for kommentarer/justering av språk

Eksperiment med trestokker på plass i skogen

Ved brytes i hovedsak ned av sopp og insekter. Men hvordan påvirker skogsdriften denne prosessen? Akkurat dette skal nedbrytningseksperimentet på EcoForest hjelpe oss med å svare på. Vi har nå fraktet granstokker til 10 tidligere flatehogde og 10 naturskogsnære skoger for å sammenligne. For å kunne studere insekter og sopps bidrag hver for seg skal noen av stokkene få ligge i bur så insektene ikke kommer til. Vi gleder oss til å se om nedbrytningen er den samme i tidligere flatehogde og naturskogsnære skoger – og hvilken rolle sopp og insekter faktisk har i de to skogtypene.

Bildene er tatt av Milda Norkute eller Tone Birkemoe om ikke annet er oppgitt.

2022

Trær til eksperimentet kuttes med hjelp fra Oslo Kommunes skoger i Sørmarka.
Trærne flyttes ut av skogen for videre oppdeling.
Her blir stokkene delt i en-meter-lange biter.
To gode hjelpere: Esben Kirk Hansen og Henning Sørli fra Oslo Kommunes skoger.
Stokkeforflytning og kutting.
Hver stokk får sitt eget individuelle merke og disker mellom stokkene tas vare på for å sjekke vedens egenskaper og beboere (sopp). Milda Norkute og Brunon Malicki i arbeid.
Diskene fraktes til labben.
PhD-student Milda Norkute er sjefen for eksperimentet. Her skal ferdig merkede stokker flyttes til et nytt sted.
LIsa Fagerli Lunde og Milda Norkute laster stokker i grabben.
Det er 240 stokker å laste opp….
Lykke er en tur i grabben sammen med ferdigkuttede stokker…..
Stokkene er flytta og nytt arbeid kan starte
Smelting av voks på primus: endene på stokkene skal forsegles så de ikke tørker ut .
Stokkene dyppes i flytende voks for at de ikke skal tørke ut fra endene,
Stokkene flyttes til fraktposer etter voksing.
Lykkelige veiledere på feltarbeid; Johan Asplund, Tone Birkemoe og Anne Sverdrup-Thygeson
Posene er klare for transport!
Posene med stokker – sett ovenifra. Det skal to poser til hver skog.
Stokkene fraktes med helikopter inn til forsøksområdene.. Video: Jan Ivar Skjedsvold
Milda Norkute er klar for å bore ut sagspon fra diskene. Vi skal, ved hjelp av DNA, finne ut hvilke sopper som er i stokkene rett etter at de var hogd.
Vedspon til DNA-analysene samles opp.
Noen av stokkene skal ligge i bur så ikke insektene kommer til. Burene blir produsert på verkstedet på NMBU.

Stokker avlevert med helikopter. Nå starter jobben med å etablere eksperimentet ute i 20 skoger på Østlandet.
Noen stokker hadde fått for lite voks på enden. Milda Norkute tar en ny runde.
Noen stokker bæres over skulderen. Milda nøler ikke.
Her må vi passe på ryggen – dette var mye bedre bæreteknikk. Rune Aanderaa og Milda Norkute i tospann.
Enkelt å legge fra seg stokkene var det også med båre-teknikken.
Båreteknikken får sin opprinnelinge mening med litt fiksing på bildet
Noen stokker skal ligge i bur som holder insekter ute.
En gruppe med stokker er lagt ut. Et bur er ganske tett, ett har store hull og en stokk ligger helt åpent. Buret med store hull slipper insekter inn, men har et mikroklima som det tette buret.
Til sammen har vi lagt ut 80 slike grupper fordelt på 20 skoger.
Ingenting er som skogsarbeid når dagens dont er unnagjordt.
Oj – vi glemte noe! Barkprøver må tas for å måle karbon, nitrogen og forsvarstoffer. Dette er med på å bestemme hvilke insekter og sopp som kan bo i stokkene.
Barken males opp før analyser vi kan analysere innholdet.
Masterstudent Geneva Lish maler opp bark.

2023

Da var vi tilbake til stokkene! Først må de veies. Masterstudent Vendel-Agathe Sungot Hide veide dem til mellom 19 og godt over 50 kilo (vekta gikk bare til 50..)
Verkstedet på NMBU har laget et supert respirasjonskammer til stokkene. Her i frakt-posisjon.
Kammeret kan enkelt settes sammen.
Klart for bruk!
Stokkene må dyttes inni kammeret,
Så må kammeret vippes opp plasseres så det står stødig.
Og der var vi klare. Gasstett lokk er montert og to slanger forbinder gassanalysatoren som måler produksjon av CO2 (karbondioksyd) og CH4 (metan) med kammeret. CO2-produksjonen sier noe om nedbrytningen i de ulike stokkene.
Kammer, gassanalysator og stokker. Vi er i gang med målingene!
Vi følger med på mobilen som er koblet opp til gassanalysatoren via WIFI. Fin og jevn CO2-produksjon her. Vi må ha jevn produksjon i tre minutter før vi er fornøyde. En nysjerrig flue følger med.
Kammeret må ventileres mellom hver måling. Det gjøres manuelt med en liten dans.
Vi sjekker om det har vært biller tilstede på stokkene. Her ser vi spor etter barkbiller som har spist og forlatt stokken etter endt larveperiode.
I noen hull så vi barkbiller i august. Montro hvilken art dette er?

Vi får ekstra nærkontakt med en barkbille – muligens granrotbille – Hylastes cunicularius.
Det vokser litt av hvert på stokkene etter et år i skogen. De små, hvite kulene må være en slimsopp.
Og dette må være en toppråtesopp. Den var vanlig på mange av stokkene våre.
Feltarbeidet med stokkeksperimentet i 2023 er formelt avsluttet. Stokkene skal ligge et år til før vi tar nye målinger.

Jordrespirasjon i felt

I tillegg til gassutveksling fra død ved (se nedenfor), er vi interessert i å måle CO2-utslipp fra bakken. Mikrober, planterøtter og jordfauna som lever under bakken produserer CO2 når de respirerer og på den måten frigis karbon til atmosfæren. I EcoForest jobber vi med å kvantifisere hvor mye karbon som frigis gjennom jordrespirasjon for bedre å forstå hvordan dette påvirker hele karbonbalansen til økosystemet. Målingene utføres i felt med en avansert gassanalysator og et såkalt «smart-kammer» som kan styres med en smarttelefon. Vi har montert jordkrager som kammeret kan stå på, og før vi gjør målingene fjerner vi alle grønne plantedeler inne i kragene. Dette er for å sikre at de overjordiske plantedelene og tilhørende biokjemiske prosesser ikke forstyrrer målingene. Arbeidet startet på sensommeren 2021 og vil fortsette ut høsten 2022.